An ICDP workshop on “Archaean-Palaeoproterozoic Transition: Emerging Modern Aerobic Earth System,” was held in Trondheim, Norway on 25–29 September 2005. The Geological Survey of Norway (NGU) organized and supported the workshop with funding from the ICDP.

The concept of studying a critical interval in Earth's history when the biosphere and geosphere experienced global scale changes was discussed during the 2004 Nordic Academy for Advanced Studies field course held in northwestern Russia. An international group of scientists deliberated in the field and decided to propose a scientific drilling project to analyze the best preserved rock record of the hallmark events that typify the Archaean–Palaeoproterozoic (2500–1900 Ma) transition. Subsequent field studies identified potential drilling sites and specific target intervals and objectives, and focused discussions during the ICDP workshop on issues associated with preparing a full drilling proposal on the Russian side of the Fennoscandian Shield.

Twenty-eight researchers from nine countries took part in the meeting, including representatives of the ICDP panels and the Federal Agency on Management of Natural Resources of the Russian Federation (ROSNEDRA). The Russian part of the Fennoscandian Shield was selected as a principle area for scientific drilling (Fig. 1) because it is characterized by exceptionally well preserved 2500–1900 Ma-old rocks compared to other regions in Australia, South Africa, and North America where rocks of similar age occur. Of the twelve global events that define worldwide environmental upheavals in the Archaean–Palaeoproterozoic transition (Fig. 2), nine are best developed in Russian Fennoscandia (shown in red), one is equally present in all four continents (shown in green), one is poorly developed (shown in blue) in Fennoscandia, and only one, a 2500-Ma banded iron formation event (shown in white), is missing in the Fennoscandian Shield. The workshop participants agreed that research of this key stage in Earth system evolution would focus on three main objectives: (i) to establish a well-characterized, well-dated, well-archived section for the period 2500–1900 Ma; (ii) to document the changes in the biosphere and the geosphere associated with the rise in atmospheric oxygen; and (iii) to develop a self-consistent model to explain the genesis and timing of the establishment of the modern aerobic Earth system. Workshop participants of breakout sessions made up six groups concerned with logistics and on-site geologists, depositional frameworks and basin analysis, stable isotopes, radiogenic isotopes, biosignatures, and palaeomagnetic studies. Each group investigated a series of designated biogeochemical events and processes. The questions of what, why, and where to drill were discussed dynamically throughout the entire workshop. The discussions also addressed how to define the knowns and unknowns of the various events and processes, including mantle evolution, major perturbations in the global carbon, phosphorus, and sulfur cycles, seawater evolution, the Great Oxidation Event, chemical biomarkers, recycling of organic matter, the oldest significant petroleum generation known, the earliest glaciations and their drivers, and palaeolatitudes and palaeomagnetic field reversals.

To obtain the best non-weathered and non-contaminated material recording the major global changes in the terrestrial biosphere and geosphere during this time interval, the workshop participants discussed and selected thirteen drilling sites (4000 m in total) in three geographically distinct regions (Fig. 1). Drilling operations will be performed simul-
The creative mood of the workshop resulted in a new project acronym FAR-DEEP, which stands for: Fennoscandian Arctic Russia – Drilling Early Earth Project. The participants were encouraged to move ahead and were further promised support by the ROSNEDRA representative. The project core group is now set to prepare a full drilling project proposal for submission to the ICDP in 2006.

Authors
Victor A. Melezhik, Geological Survey of Norway, N-7491 Trondheim, Norway. e-mail: victor.melezhik@ngu.no
Aivo Lepland, Geological Survey of Norway, N-7491 Trondheim, Norway

Related Web Link
http://far-deep.icdp-online.org

Figure 2. Major Early Palaeoproterozoic events (see explanation in text).

Upcoming Workshops


An international research group is planning the research initiative “Potrok Aike Lake Sediment Archive Drilling Project” (PASADO) within the framework of ICDP. The intended project will address several key issues related to the evolution of maar craters, quantitative climatic and environmental reconstruction, fire history, tephra and dust deposition and paleoecological variation of the Earth’s magnetic field for the last several glacial to interglacial cycles. Moreover, dust and tephra records will provide links to marine sediment archives and ice cores. Obtained reconstructions of climate variability will be compared to climate simulations from global circulation models (GCM) to detect signals of climatic forcing.


The Snake River Plain represents a world-class example of active mantle plume volcanism in an intra-continental setting. Because it is young and tectonically undisturbed, the complete record of volcanic activity can be sampled only by drilling. The preliminary scientific plan is to core a series of 4-6 drill holes along the axis of the eastern and western Snake River Plain in order to study the geochemical and stratigraphic variations in plume-related volcanism in space and time. Interested parties should submit the application form available from the Web site to John Shervais at shervais@cc.usu.edu.

ICDP Workshop Lake Van Drilling Project - PaleoVan 6–9 June 2006, Van, Turkey More information at http://www.paleontolgy.uni-bonn.de/

Lake Van in Turkey is an excellent paleoclimatic archive comprising long high-resolution annually laminated sediment records covering several glacial-interglacial cycles. The lake is situated on the high plateau of eastern Anatolia. It is the fourth largest of all terminal lakes in the world and contains highly alkaline water. Specific goals of the proposed PaleoVan project are to reconstruct the following: (1) Paleoclimate development in a sensitive semi-arid region based on transfer functions (pollen, stable isotopes) and modeling; (2) Climatic variability in space and time based on teleconnection with other high-resolution records such as ice cores and marine sequences; (3) Dynamics of lake level fluctuations and hydrogeological development; (4) Formation and age of Lake Van; (5) History of volcanism and volcanic activities based on tephrostratigraphy; (6) Variations of the geomagnetic field; (7) Tectonic, paleoseismic and earthquake activities; (8) Interactions between man and environment since prehistoric time. Registration: All participants are requested to register through the registration form from the Web site to Thomas Litt (t.litt@uni-bonn.de). The registration deadline is 31 March.

InterMargins Workshop on Climate-Tectonic Drilling in Southeast Asia 5–7 June 2006, Kochi, Japan More information at http://www.abdn.ac.uk/~ewpg008/RedRiverWorkshop.html

Interactions between the solid earth and the global climate system are a frontier area for ocean and Earth science research and have been highlighted as a focus area for the IODP. Of all the possible links between these earth systems, the proposed associations